GMO Feeding Studies

— Written By
en Español / em Português
Español

El inglés es el idioma de control de esta página. En la medida en que haya algún conflicto entre la traducción al inglés y la traducción, el inglés prevalece.

Al hacer clic en el enlace de traducción se activa un servicio de traducción gratuito para convertir la página al español. Al igual que con cualquier traducción por Internet, la conversión no es sensible al contexto y puede que no traduzca el texto en su significado original. NC State Extension no garantiza la exactitud del texto traducido. Por favor, tenga en cuenta que algunas aplicaciones y/o servicios pueden no funcionar como se espera cuando se traducen.


Português

Inglês é o idioma de controle desta página. Na medida que haja algum conflito entre o texto original em Inglês e a tradução, o Inglês prevalece.

Ao clicar no link de tradução, um serviço gratuito de tradução será ativado para converter a página para o Português. Como em qualquer tradução pela internet, a conversão não é sensivel ao contexto e pode não ocorrer a tradução para o significado orginal. O serviço de Extensão da Carolina do Norte (NC State Extension) não garante a exatidão do texto traduzido. Por favor, observe que algumas funções ou serviços podem não funcionar como esperado após a tradução.


English

English is the controlling language of this page. To the extent there is any conflict between the English text and the translation, English controls.

Clicking on the translation link activates a free translation service to convert the page to Spanish. As with any Internet translation, the conversion is not context-sensitive and may not translate the text to its original meaning. NC State Extension does not guarantee the accuracy of the translated text. Please note that some applications and/or services may not function as expected when translated.

Collapse ▲

by Layla Katiraee
January 14, 2016

Proper experimental design is the foundation of any scientific publication. However, a study is not so easy to plan, particularly when it includes methods that are expensive or that use tools that are hard to find. To make things more complicated, many studies are performed as part of a Master’s or Doctoral thesis, and the investigator gains skills and knowledge throughout the course of the experiment. By the time the study is done, the investigator sees parts she would have done differently.

Studies that involve animals are especially complex, since you cannot “redo” a failed experiment as easily as you can with in vitro or in silico assays. Criticisms by reviewers and editors can seldom be addressed during the peer review process: if an editor or reviewer identifies a flaw in an animal feeding study, it often cannot be redone due to resource constraints.

Poorly designed GMO feeding studies abound, quite possibly due to these difficulties in performing any animal feeding study. Such studies are often used by people who claim GMO are dangerous. It can be difficult to determine if a study has been properly designed and performed. We’ve put together a list to help you navigate through the messy world of GMO feeding studies.

Feed Analysis

*The nutritional content of feed given to both control and treatment animals must be analyzed to determine if there are any differences other than the GM trait. If the feeds aren’t as identical as possible, any difference observed between the treated animals and controls cannot be attributed exclusively to the GM trait.

*Many papers have shown that the environment has a strong impact on nutrient and mineral content in crops, so a failure to perform this analysis is a critical flaw in any GM feeding study. Anti-nutrient content, and toxin-producing fungi and bacteria must be analyzed as well.

*For example, the paper “The Comparative Effects of Genetically Modified Maize and Conventional Maize on Rats” observed differences in organ size and other parameters between the rats fed a diet with GMOs and controls, however, without analysis of the feed we don’t know if the differences are due to the GM trait. Maize has natural variation in sugar content, protein content and other nutrients which could have given rise to the observed differences, rather than the Bt-trait to which the authors attributed the observed differences.

Read more.